
Figure 2. ICC(2,1) of the CVR
maps from each pipeline.

In both figures:
• pre: before denoising
• echo-2: single echo data
• optcom: optimally
combined (OC) ME data
• meica-agg: OC data,
denoising with "noise" ICs
timeseries
• meica-ort: OC data,
denoising with "noise" ICs
timeseries orthogonalised to
CO2 trace
• meica-con: OC data,
denoising with "noise" ICs
timeseries orthogonalised to
CO2 trace and "signal" ICs

Fig. 1. FD vs DVARS of the denoising pipelines for a representative subject. Each
dot is a timepoint, each line a session. Optimal Combination of ME data improves
motion denoising compared to single echo, ME-ICA is even more effective.

In tasks with high motion
collinearity, noisy ICs must be

added to the regression model
after orthogonalization to the
signals of interests and other

BOLD-related ICs.

Visit website: https://smoia.github.io/cvr-meica-motion-removal
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Results

• Fig. 1: ME-fMRI with optcom and ME-ICA enhances
denoising of motion-related effects (i.e. reduced FD-
DVARS correlation), but the type of model with data-
driven ICA nuisance regressors is key for denoising
performance.
 

• Fig. 2: Optcom and meica-con yield the most reliable
CVR maps, while meica-aggr is the least reliable since
the effect of interest (CVR) is removed due to high
collinearity of motion-related IC components.
 

Overall, meica-con produces the most reliable CVR
maps with improved motion denoising.
 

More results in the companion website.

• Seven healthy volunteers underwent 10 MRI sessions
in a 3T Siemens PrismaFit scanner, spaced 1-week
apart at the same time of day.
 

• A BH task adapted from [6] was administered at each
session while collecting ME-fMRI data. CO2 levels were
measured using a nasal cannula with gas analyzer
(ADInstruments) and BIOPAC MP150 system. A T1-w
image was collected during each session. The
parameters can be found in the website version.
 

• ME data were decomposed using ICA (tedana [3]), and
the ICs were manually classified into "signal" and
"noise" ICs (see website).
 

• In order to obtain CVR maps, data preprocessing and
analysis followed the steps described in [7] (optcom).
The same steps were applied to the second echo
volume (echo-2). Additionally, the optimally combined
data were analysed using a similar pipeline, but
including in the GLM the nuisance regressors: (I) the
"noise" ICs timeseries (meica-aggr), or (II) the "noise" ICs
timeseries orthogonalised w.r.t. the CO2 trace (meica-
ort), or (III) the "noise" ICs timeseries orthogonalised
w.r.t. the CO2 trace and the "signal" ICs timeseries
(meica-con).
 

• FD and DVARS [8,9] were computed before
realignment (pre) and on the optcom volume, after
removal of the reconstructed volume from the nuisance
regressors.
 

• ICC(2,1) was computed using 3dICC (AFNI) [10] on the
CVR maps, obtained from the fit of the CO2 regressor in
each of the data analysis pipelines.

Methods

• Functional MRI presents different sources of noise.
 

• Removal of task-correlated noise, such as in a Breath-
Holding (BH) paradigms, is particularly challenging due
to the tradeoff between effective denoising and signal
conservation [1].
 

• Independent component analysis (ICA) can also be
employed to identify noise and use this information
during nuisance regression [2].
 

• Multi-echo fMRI allows increasing the contrast to
noise ratio of the signal by optimal combination of the
echoes, and identifying non-BOLD sources from BOLD-
related components via ME-ICA [3-5].
 

• Main aim: Evaluate different denoising variants to
clean ME-fMRI data acquired during a BH task, in order
to improve Cerebrovascular Reactivity (CVR) estimation.
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